ブログトップ

DAY BY DAY

takechi59.exblog.jp

my life

沸騰水型原子炉 Boiling Water Reactor、BWR

東京電力 福島第一原子力発電所 
e0203309_1915852.jpg

東京電力ホームページより


03.20 福島第一原子力発電所プラント状況等のお知らせ(3月20日 午後2時00分現在)
http://www.tepco.co.jp/nu/f1-np/press_f1/2010/htmldata/bi1366-j.pdf
1号機から6号機まで原子炉は停止、決死の海水の注水作業を実施。3.4.5.6号炉の外部電源復旧作業が進む。
4.5.6号炉については、放射能の漏洩は無いものとしている。

原子炉形式

沸騰水型原子炉(ふっとうすいがたげんしろ、英: Boiling Water Reactor、BWR)は、核燃料を用いた原子炉のうち、純度の高い水が減速材と一次冷却材を兼ねる軽水炉の一種である。
1号機 2号機 3号機 4号機 5号機 6号機 の主契約者はそれぞれ、GE/ GE・東芝/ 東芝/ 日立/ 東芝/GE・東芝
電気出力(万kW)は、それぞれ  46.0 ・78.4 ・78.4 ・78.4 ・78.4 ・110.0
営業運転開始は、それぞれ 1971/3  1974/7  1976/3  1978/10  1978/4  1979/10
国産化率(%) は、それぞれ 56・53・91・91 ・93・63
燃料集合体数(体) は、1号機400 2号機~5号機 548 6号機764
制御棒本数(本)は、1号機 97 2号機~5号機137 6号機185

概要
核分裂反応によって生じた熱エネルギーで軽水を沸騰させ、高温・高圧の蒸気として取り出す原子炉であり、発電炉として広く用いられている。炉心で取り出された汽水混合流の蒸気は汽水分離器、蒸気乾燥機を経てタービン発電機に送られ電力を生ずる。原子炉としては単純な構造ということもあり、日本国内で運転可能な原子炉の中では、最も多いタイプであるが、原子炉炉心に接触した水の蒸気を直接タービンに導くため、放射性物質に汚染されることにより、耐用年数終了時に放射性廃棄物が、加圧水型原子炉 (PWR) より多く発生し廃炉コストが嵩む可能性が高い。また、その汚染のため作業員の被曝量が加圧水型原子炉よりも多い。

発電に利用された蒸気は放射能を帯びている為、蒸気を回収し再循環させるだけでなく、タービン建屋(たてや)など、これに関わる全ての系を堅牢に遮蔽することで、放射線が外部に漏れることを防いでいる。 外部からの核分裂反応の制御は主に制御棒や、冷却材流量の増減で行われ、冷却材喪失事故時には非常用炉心冷却装置 (ECCS) を動作させる。

日本における商用炉では、東北電力、東京電力、中部電力、北陸電力、および中国電力が沸騰水型を採用している。

戦後の技術導入の経緯から、東京電力は沸騰水型原子炉 (BWR) を、関西電力は加圧水型原子炉 (PWR) を、それぞれ原子力発電所の基本設計として採用し現在に至る。

BWRの自己制御性 [編集]BWRにおいて、何らかの原因で核分裂反応が増大すると、それに伴なって発生する熱エネルギーも増大する。BWRの冷却材は原子炉内で沸騰しているので、増大する熱エネルギーに比例して冷却材中の蒸気の泡(ボイド)の量も増えてゆく。これは結果として冷却材の密度を低下させるが、軽水炉の冷却材は減速材でもあるため、冷却材の密度が減ると減速される中性子が少なくなり、そのため核分裂反応が減少していく。逆に核分裂反応が減少すると熱エネルギーが減って蒸気泡が減り、減速される中性子量が増えていくため、核分裂反応が増えていく。このような現象は負の反応度係数によるフィードバックといい、BWR固有の自己制御性であり、核分裂反応の極端な増減を自ら抑えている。

BWRでは、この自己制御性を利用して原子炉出力の短期的な制御を行っている。すなわち原子炉出力を上げたい時は冷却材再循環ポンプの出力を上げる。すると原子炉内を循環する冷却材の流量が増え、運び出される熱量が多くなる結果として蒸気泡の量が少なくなり、原子炉出力が上昇する。逆に原子炉出力を下げたい時は再循環ポンプの出力を下げると蒸気泡が多くなって原子炉出力が低下する。

ちなみに、負荷が増えると原子炉の温度が下がり、泡が減るため核分裂が増加するので、負荷追従運転が可能であるが、日本国内では行われていない。

またその原理上、BWRの自己制御性には正の反応度係数がある。これは炉内の圧力が上昇すると、ボイドがつぶれるため減速材の密度が増加し、減速される中性子が増加するため核分裂反応が増加するというもので、BWRの弱点とされている。

しかし、実際の原子炉は、正の反応度係数によるフィードバックの影響を抑制し、最大出力時に主蒸気隔離弁を急閉しても暴走しないよう設計されている。また、主蒸気管のヘッダーにこの急な圧力上昇を防ぐため逃し安全弁が数多く取り付けられている。

非常用炉心冷却装置(ひじょうようろしんれいきゃくそうち、ECCS、Emergency Core Cooling System、緊急炉心冷却装置)
水を冷却材として用いる原子炉の炉心で冷却水の喪失が起こった場合に動作する工学的安全施設である。炉心に冷却水を注入することで核燃料を長期に渡って冷却し燃料棒の損壊を防止する。ECCSの作動は原子炉の停止を意味する。

冷却材に水を使う動力炉では、炉心を冷やす冷却系統の配管が破断するなどして冷却水が喪失すると、炉心の熱密度が高いため、スクラムと呼ばれる制御棒の一斉挿入による原子炉の緊急停止を行なっても、炉心の余熱と放射性物質の崩壊熱による高熱で炉心が破損・溶解する危険性がある。ECCSは原子炉圧力容器に水を注入することで、炉心を冷却し破損を防止する。
wikipedia

伊方原子力発電所は、加圧水型軽水炉
e0203309_1985313.jpg

四国電力ホームページより

加圧水型原子炉(かあつすいがたげんしろ、英: Pressurized Water Reactor, PWR)は、核分裂反応によって生じた熱エネルギーで、一次冷却材である加圧水(圧力の高い軽水)を300℃以上に熱し、蒸気発生器によって二次冷却材の軽水を沸騰させ、最終的に高温高圧の蒸気としてタービン発電機を回し、電力を生み出す原子炉。発電炉として、原子力発電所の大型プラントや、原子力潜水艦、原子力空母などの小型プラントに用いられる。

一次冷却系と二次冷却系という分離された冷却系を有する原子炉では、放射性物質を一次冷却系に閉じこめることが出来る為、沸騰水型原子炉 (BWR) のようにタービン建屋を遮蔽する必要が無く、タービン・復水器が汚染されにくいため保守時の安全性でも有利である。ただ、蒸気発生器という沸騰水型原子炉にはない複雑に配管がからみ合った熱交換器や必然的に増えるポンプや配管類の保守性や安全性は別に考慮されるべきである。実際に蒸気発生器のトラブルは過去に頻発しており、近年は事故があまり起こらないのは保守担当者の労力に拠っている。

沸騰水型原子炉でもほぼ同様だが、加圧水の炉心出口温度を上げることでより高い熱効率を得ることが出来るが、主に燃料棒の金属被覆ジルコニウムの温度に対する脆弱性の問題で、あまり高温にすることが出来ない為に、火力発電所では常識となった超臨界水を熱媒体として使用することは出来ない。沸騰水型原子炉では加圧水型原子炉に比べ、二つの冷却系間における熱交換ロスがないので経済性では優位といえる。

一次冷却材漏洩減少時や喪失時には非常用炉心冷却装置(ECCS、緊急炉心冷却装置)を作動させる。

外部からの即時制御は制御棒によって行われる。ほとんどの加圧水型原子炉では、制御棒が上部から圧力容器を貫いて炉心へ挿入される設計が採られており、また制御棒の駆動機構が故障するなどの非常時には駆動機構から制御棒を切り離して自由落下によって制御棒が炉心に挿入出来るようにもなっている。このため制御棒が格納容器の下部から入れられる設計の沸騰水型原子炉で頻繁に発生して問題となっている制御棒の抜け落ち事故は起こりえない。


加圧水型原子炉 圧力容器制御棒は最も重要な安全装置であり、必要な時に制御棒が炉心から抜け落ちている事態は絶対に避けなければならない。事故発生時に冷却系を停止した後の炉心の冷却は、制御棒が炉心に挿入されている事を前提に事故対応が計画されており、炉心が全力で核エネルギーを開放している場合は、非常用炉心冷却装置による放熱や炉心と一次冷却水の熱容量だけではすぐに限界を迎える。この点で、加圧水型原子炉は沸騰水型原子炉に対して優位であるが、何らかの不具合で制御棒が挿入できない場合には同じように危険である。

加圧された一次冷却材水は熱せられても液体の状態であるため再循環が容易であるが、反面、スリーマイル島原子力発電所事故のように、ひとたび液体でなくなれば一次冷却水の残存量すら判らなくなる様に、通常の制御手段がとれずに、非常用炉心冷却装置の他は冷却の手段がなくなる。

日本の商用炉においては、北海道電力、関西電力、四国電力、九州電力各社の全原子力発電所とも、加圧水型が採用されている。
wikipedia

Today's CD
Daniel Shafran 3 [Import, from US]
Ludwig van Beethoven (作曲), Anton Ginzburg(Piano)
e0203309_1923477.jpg

[PR]
by takechihome | 2011-03-20 19:23